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Abstract

Modern cosmological simulations have reached the trillion-element scale, rendering
data storage and subsequent analysis formidable tasks. To address this circumstance,
we present a new MPI-parallel approach for analysis of simulation data while the sim-
ulation runs, as an alternative to the traditional workflow consisting of periodically
saving large data sets to disk for subsequent “offline” analysis. We demonstrate this
approach in the compressible gasdynamics/N-body code Nyx, a hybrid MPI4+OpenMP
code based on the BoxLib framework, used for large-scale cosmological simulations. We
have enabled on-the-fly workflows in two different ways: one is a straightforward ap-
proach consisting of all MPI processes periodically halting the main simulation and
analyzing each component of data that they own (“in situ”). The other consists of
partitioning processes into disjoint MPI groups, with one performing the simulation
and periodically sending data to the other “sidecar” group, which post-processes it
while the simulation continues (“in-transit”). The two groups execute their tasks asyn-
chronously, stopping only to synchronize when a new set of simulation data needs to be
analyzed. For both the in situ and in-transit approaches, we experiment with two dif-
ferent analysis suites with distinct performance behavior: one which finds dark matter
halos in the simulation using merge trees to calculate the mass contained within iso-
density contours, and another which calculates probability distribution functions and
power spectra of various fields in the simulation. Both are common analysis tasks for
cosmology, and both result in summary statistics significantly smaller than the original
data set. We study the behavior of each type of analysis in each workflow in order to
determine the optimal configuration for the different data analysis algorithms.

1 Introduction

Data analysis and visualization are critical components of large-scale scientific computing
(1,2, 3,4, 5]. Historically such workflows have consisted of running each simulation on a static
compute partition and periodically writing raw simulation data to disk for “post-processing.”



Common tasks include visualization and size reduction of data, e.g., calculating statistics,
field moments, etc. Other tasks can be domain-specific: for example, evolving large nuclear
reaction networks on passively advected tracer particles in supernova simulations [6, 7, 8].
Often the data footprint of the output from these post-processing tasks is much smaller than
that of the original simulation data [4, 9].

As simulations grow larger, however, this approach becomes less feasible due to disk
bandwidth constraints as well as limited disk capacity. Data analysis requirements are
outpacing the performance of parallel file systems, and, without modifications to either
workflows or hardware (or both), the current disk-based data management infrastructure will
limit scientific productivity [1, 10]. One way to avoid exposure to the increasingly disparate
performance of disk I/O vs. inter- and intra-node bandwidth is to limit the volume of data
which is written to disk. This strategy can be realized in different ways; one approach
is simply to write data relatively infrequently, e.g., every large number of time steps when
evolving time-dependent problems. However, limiting the number of time steps at which grid
data is saved in order to conserve disk space also discards simulation data by “coarsening”
in the temporal dimension [3]. For example, in order to produce a mock galaxy catalog
from an N-body simulation, it is essential to create halo merger trees, which describe the
hierarchical mass assembly of dark matter halos [11]. It is, however, well recognized that in
order to recover converged merger trees, identification of halos with high temporal resolution
is needed [12].

A second strategy for addressing the 1/O problem is to shift data analysis from executing
“offline” (on disk; [4]) to running while the simulation data is still in memory. Such a
workflow can be expressed in a myriad of ways, two of which we explore in this work. One
approach consists of all MPI processes periodically halting the simulation and executing
analysis routines on the data in memory ( “in situ”). The second method consists of dividing
the processes into two disjoint groups; one group evolves the simulation and periodically
sends its data to the other, which performs the analysis while the simulation continues
asynchronously (“in-transit;” e.g., [10]). While in situ approaches have long been recognized
as efficient ways of avoiding 1/0, less attention has been devoted to in-transit methods.

In situ and in-transit methods each have potential strengths and weaknesses. The former
method requires no data movement beyond what is inherent to the analysis being performed.
Its implementation is also relatively non-invasive to existing code bases, consisting often of
adding a few strategically placed function calls at the end of a “main loop.” However, if the
analysis and simulation algorithms exhibit disparate scaling behavior, the performance of
the entire code may suffer, since all MPI processes are required to execute both algorithms.
In-transit methods, on the other hand, lead to more complex workflows and more invasive
code changes, which may be undesirable [4]. They also require significant data movement,
either across an interconnect or perhaps via specialized 1/O accelerator (“burst buffer”).
However, they can be favorable in cases where the analysis code scales differently than that
of the main simulation: since the analysis can run on a small, separate partition of MPI
processes, the remaining processes can continue with the simulation asynchronously. This
feature in particular may become especially salient as execution workflows of modern codes



become more heterogeneous, since different components will likely exhibit different scaling
behavior.

The nature of the post-processing analysis codes themselves also plays a role in the effec-
tiveness of in-transit implementations. In many scientific computing workflows, the “main”
simulation code performs a well defined task of evolving a physical system in time, e.g., solv-
ing a system of partial differential equations. As a result, its performance characteristics and
science goals are relatively stationary. Analysis codes, in contrast, are implementations of a
zoo of ideas for extracting scientific content from simulations. Being exploratory in nature,
their goals are more ephemeral and heterogeneous than that of the simulation itself, which
in general leads to more diverse performance behavior. The in-transit framework presented
here provides the ability for analysis codes can be run together with the simulation, but
without a strict requirement of being able to scale to a large number of cores. It is there-
fore useful to think of this in-transit capability as adding “sidecars” to the main vehicle: in
addition to resources allocated exclusively for running the simulation, we allocate a set of
resources (often much smaller) for auxiliary analysis tasks.

In this work we explore both in situ and in-transit data analysis workflows within the
context of cosmological simulations which track the evolution of structure in the universe.
Specifically, we have implemented both of these workflows in the BoxLib framework, and
applied them to the compressible gasdynamics/N-body code Nyx, used for simulating large
scale cosmological phenomena [13, 14]. We test each of these workflows on two different
analysis codes which operate on Nyx data sets, one which locates dark matter halos, and
another which calculates probability distribution functions (PDFs) and power spectra of var-
ious scalar fields in the simulation. In §2 we describe the scientific backdrop and motivation
for the data analysis implementations which we have tested. In §3 we provide the details
of our implementation of the in situ and in-transit workflows in the BoxLib framework. §4
contains a description of the two analysis codes which we explored using both in situ and
in-transit methods. We discuss the performance of the two codes in each of the two analysis
modes in §5, and we discuss prospects and future work in §6.

2 Cosmological simulations

Cosmological models attempt to link the observed distribution and evolution of matter in the
universe with fundamental physical parameters. Some of these parameters serve as initial
conditions for the universe, while others characterize the governing physics at the largest
known scales [13, 15]. Numerical formulations of these models occupy a curious space in
the data analysis landscape: on one hand, each cosmology simulation can be “scientifically
rich” [4]: exploratory analysis of the simulation may lead to new insights of the governing
physical model which could be lost if the raw data is reduced in memory and discarded. On
the other hand, many models exhibit a highly nonlinear response to the initial perturbations
imposed at high redshift, in which case isolated “heroic” simulations may not capture all of
the features of interest which arise from such nonlinear behavior [13, 15]. Instead, one may
wish to perform many such simulations and vary the initial conditions of each in order to



capture the nuanced behavior of the models; such behavior can often be expressed even in a
highly reduced set of data (e.g., a density power spectrum). We emphasize, then, that the
data analysis methods presented here represent only a subset of techniques which will be
required to manage the simulation data sets in future scales of computational cosmology.

The backdrop for the data post-processing methods described in this work is Nyx, a com-
pressible gasdynamics/N-body particle code for cosmological simulations of baryonic and
cold dark matter (CDM) [13, 14]. Nyx is based on BoxLib, an MPI4+OpenMP parallelized,
block-structured, adaptive mesh refinement (AMR) framework [16]. It models baryonic mat-
ter as a self-gravitating, compressible gas, composed of hydrogen and helium, and evolves it
with a second-order accurate piecewise-parabolic method, using an unsplit Godunov scheme
with full corner coupling [13, 17, 18]. It solves the Riemann problem iteratively using a
two-shock approximation [19]. The CDM is treated as a non-relativistic, pressureless fluid,
which is evolved with an N-body treatment, using a “cloud-in-cell” method [20] to project
particles onto the AMR grid.

A typical Nyx simulation evolves a cosmology from high redshift (z > 100) to the present
(z = 0) in many thousands of time steps. The size of each time step is limited by the
standard CFL condition for the baryonic fluid, as well as by a quasi-CFL constraint imposed
on the dark matter particles, and additionally by the evolution of the scale factor a in the
Friedmann equation; details of these constraints are described in [13]. Currently the largest
Nyx simulations are run on a 4096 grid, and at this scale each plotfile at a single time step is
~ 4 TiB, with checkpoint files being even larger; a complete data set for a single simulation
therefore reaches well into the petascale regime. A single simulation can therefore fill up a
typical user allocation of scratch disk space (O(10) TiB) in just a few time steps. We see
then that modern simulation data sets represent a daunting challenge for both analysis and
storage using current supercomputing technologies.

Nyx simulation data lends itself to a variety of popular post-processing cosmological anal-
ysis tasks. For example, in galaxies and galaxy clusters, observations have indicated that
dark matter is distributed in roughly spherical “halos” that surround visible baryonic matter
[15]. These halos provide insight into the formation of the largest and earliest gravitationally
bound cosmological structures. Thus a common task performed on cosmological simulation
data sets is determining the distribution, sizes, and merger histories of dark matter halos,
which are identified as regions in simulations where the dark matter density is higher than
some prescribed threshold. A recent review [21] enumerates 38 different algorithms com-
monly used to find halos. To process data from Nyx (an Eulerian code), we use a topological
technique based on iso-density contours, as discussed in §4.1. The approach produces results
similar to the “friends-of-friends” (FOF') algorithm used for particle data [15].

A second common data post-processing task in cosmological simulations is calculating
statistical moments of different fields, like matter density, or Lyman-a flux. The first two
moments — the PDF and power spectrum — are often of most interest in cosmological
simulation analysis. Indeed, it is fair to say that modern cosmology is essentially the study
of the statistics of density fluctuations, whether probed by photons, or by more massive
tracers, such as galaxies. The power spectrum of these fluctuations is the most commonly



used statistical measure for constraining cosmological parameters [22, 23, 24], and is one
of the primary targets for numerical simulations. In addition to cosmology, one may be
interested in predictions for astrophysical effects from these simulations, like the relationship
between baryonic density p, and temperature T in the intergalactic medium, or details of
galaxy formation.

3 In situ vs. in-transit

Having established the scientific motivation for data post-processing in cosmological simula-
tions, we now turn to the two methods we have implemented for performing on-the-fly data
analysis in BoxLib codes.

3.1 In situ

To implement a simulation analysis tool in situ in BoxLib codes such as Nyx, one appends
to the function Amr::CoarseTimeStep() a call to the desired analysis routine. All MPI
processes which participate in the simulation execute the data analysis code at the conclusion
of each time step, operating only on their own sets of grid data. As discussed earlier, the
advantages of this execution model are that it is minimally invasive to the existing code
base, and that it requires no data movement (except that inherent to the analysis itself).
One potential disadvantage of in situ analysis is that if the analysis algorithm does not scale
as well as the simulation itself, the execution time of the entire code (simulation + analysis)
will suffer. Indeed, we encounter exactly this bottleneck when calculating power spectra,
which we discuss in §4.2.

3.2 In-transit

The in-transit implementation of data analysis codes in Nyx is more complex than the in situ
approach, due to the necessary data movement and the asynchrony of the calculation. Dur-
ing initialization, BoxLib splits its global MPI communicator into two disjoint communica-
tors, m_comm_comp for the group which executes the simulation, and m_comm_sidecar for the
“sidecar” group which performs the analysis. The user prescribes the sizes of each group
at runtime, and the sizes are fixed for the duration of code execution. Upon reaching a
time step at which analysis is requested, Nyx transfers via MPI the requisite data from the
compute group to the sidecar group. Some of this data is copied to every sidecar process,
e.g., the geometric information of the problem domain and how Boxes are arranged on the
domain; to communicate such data, Nyx performs an intergroup MPI_Bcast (). The bulk of
the data to be communicated consists of the floating-point state field stored in each Box; in
BoxLib these data are called Fortran Array Boxes (FABs). Because we have two MPI groups
and two communicators when executing in-transit (as well as an intergroup communicator
conecting the two), we generate two “distribution maps” for the simulation data, one de-
scribing the distribution of FABs across processes in the compute group, and the other in the



sidecar group. This provides BoxLib with a bijective mapping of the FAB data distribution
between the two groups, allowing us to perform point-to-point intergroup MPI_Send ()s and
MPI_Recv()s to transfer the data between corresponding processes in the two groups. We
summarize the method for sending and receiving this data in Algorithm 1.

if I am a compute proc then
broadcast Box list to analysis procs;
receive distribution map on analysis procs;
foreach FAB I own do
get global FAB index;
find which sidecar proc will own FAB;
send FAB data to sidecar proc;
end
else
receive Box list from compute procs;
generate new distribution map on sidecar group;
broadcast distribution map to compute procs;
foreach FAB I will receive do
get global FAB index;
find which compute proc owns FAB;
receive FAB from compute proc;

end

end
Algorithm 1: Data movement logic when sending distributed grid data from compute
processes to sidecar processes via MPI.

The distribution of data over each MPI group need not be the same, since each group
can have arbitrary size. For example, if the simulation contains 4096 Boxes and the compute
group has 2048 processes, each process will own 2 Boxes; however, if the sidecar group has
only 256 processes, each process will own 16 Boxes. After the FABs have been sent to
the analysis group, that group executes the desired analysis code, while the compute group
continues with the simulation. A schematic of this Box movement across MPI groups is
depicted in Figure 1.

The receipt of FABs onto a single MPI process is an inherently serial process. This
property can affect code performance adversely if a large number of compute processes send
their data to a small number of sidecar processes, because a compute process cannot continue
with the simulation until all of its FABs have been sent, and each sidecar process can receive
only one FAB at a time. In the example shown in Figure 1, process 5 receives FABs from
processes 1 and 3; if, by coincidence, process 5 receives all four of process 3’s FABs in
order, process 3 can continue with its next task before process 1; however, process 5 cannot
continue until it has received all FABs from both processes 1 and 3. In this example the
ratio of sending to receiving processes, R = Ns/N, = 2, is relatively small; the serialization
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Figure 1: Example schematic illustrating data movement of block-structured grids from the
simulation MPI group to the sidecar group when running in-transit. Each Box is uniquely
numbered, and Boxes shaded in the same color are located on the same MPI process, whose
rank is identified in parentheses. In this example, a grid composed of 16 Boxes moves from
a distribution across 4 processes, with 4 Boxes per process, to a new distribution across 2
processes, with 8 Boxes per process.

of this data transfer will have only a minor effect on aggregate code performance. However,
if R ~ O(100) or O(1000), the effect will be more pronounced.

3.3 Task scheduling

In both the in situ and in-transit workflows in BoxLib, we have added a simple queue-based,
first-in-first-out scheduler which governs the order of data analysis tasks being performed.
As we generally have a small number of tasks to perform during analysis, this approach is
quite satisfactory. If the number of analysis tasks grows larger (a trend which we expect),
then the workloads of each of these tasks will become more complex, and the variability in
scaling behavior of each may be large as well. In this case a more sophisticated scheduling
system — in particular one which accounts for a heuristic describing the scalability of each
task and allocates sidecar partitions accordingly — may become more useful.

4 Cosmological simulation analysis tools

Many types of cosmological simulations can be broadly characterized by a small set of quan-
tities which are derived (and highly reduced) from the original simulation data set. Such
quantities include the distribution and sizes of dark matter halos, PDFs and power spectra
of baryon density, dark matter density, temperature, Lyman-a optical depths, etc. [14]. We
obtain these quantities from Nyx simulation data using two companion codes: Reeber, which
uses topological methods to compute dark matter halo sizes and locations; and Gimlet, which
computes statistical data of various fields. Because the algorithms in these codes are very
different, the codes themselves exhibit different performance and scaling behavior. There-
fore, they together span a useful parameter space for evaluating the utility of in situ and
in-transit methods. In addition to operating on data in memory, both Reeber and Gimlet
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Figure 2: Halo definition based on iso-density contours. Halos are regions above a den-
sity threshold thoundary (light gray region) whose maximum density exceeds tpa, (dark gray
regions).

are capable of running “offline,” in the traditional post-processing workflow described in §1.
We describe each of these codes below.

4.1 Reeber

Reeber is a topological analysis code, which constructs merge trees of scalar fields. A merge
tree describes the relationship among the components of super-level sets, i.e., regions of the
data set with values above a given threshold. The leaves of a merge tree represent maxima, its
internal nodes correspond to saddles where different components merge; its root corresponds
to the global minimum [25].

An illustration of Reeber’s halo-finding algorithm is shown in Figure 2. To identify iso-
density-based halos efficiently, we traverse the merge tree upwards from the root, finding
all edges that cross the value t,oundary. This operation corresponds to drawing the merge
tree such that the height of each node corresponds to its function value and identifying all
sub-trees above a line at the height of ¢poundary. We then traverse each sub-tree to identify
its highest maximum. If this maximum exceeds ty,1,, the sub-tree represents a halo, and we
compute its position as the centroid of all grid points belonging to the sub-tree as well as its
mass as the cell-size-weighted sum of all grid points belonging to the sub-tree.

As a topological descriptor, a merge tree is primarily a means to an end: its utility comes
from providing an efficient way to query a field for interesting topological information, e.g.,
are two regions of a field connected above a given threshold, or what is the number of
connected components at density p whose density maximum is higher than p'?7 In Nyx
simulations, one requires the answer to exactly these questions when identifying the locations,
distribution, and merger histories of dark matter halos, as discussed in §2. Given the dark
matter density field and its boundary conditions, Reeber first constructs its merge tree, and
then uses it to identify halos based on user-defined density thresholds [26]. The merge tree
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Figure 3: Convergence of the halo mass function in Nyx simulations with the Reeber halo
finding code. Solid lines demonstrate how Reeber’s distribution of halo masses change when
increasing the spatial resolution in Nyx runs. As expected, we observe the differences only
at the low-mass end, since coarse grids cannot capture well small halos, while the agreement
on the high-mass end is good. The dashed lines show results of a FOF halo finder when the
linking length parameter is chosen to match approximately the iso-density contour used in
Reeber. FOF results are used as a validation here, showing that Reeber results converge to
the “correct” answer.

itself does not depend on any parameters, only on the input function. Accordingly, one
can repeatedly query the same tree with different halo thresholds without reconstructing it
each time. A recent result applying Reeber to various Nyx simulation data sets is shown in
Figure 3.

Implementing a scalable representation of merge trees on distributed memory systems
is a challenging but critical endeavor. Because the merge tree is a global representation of
the entire field, traditional approaches for distributing the tree across independent processes
inevitably require communication-intensive reduction to construct the final tree, which in
turn lead to poor scalability. Furthermore, modern simulations operate on data sets that are
too large for all topological information to fit on a single compute node. Reeber’s “local—-
global” representation addresses this problem by distributing the merge tree, so that each
node stores detailed information about its local data, together with information about how



the local data fits into the global merge tree. The overhead from the extra information is
minimal, yet it allows individual processors to globally identify components of super-level sets
without any communication [25]. As a result, the merge trees can be queried in a distributed
way, where each processor is responsible for answering the query with respect to its local
data, and a simple reduction is sufficient to add up contribution from different processes.
A detailed description of merge trees, contour trees, and their “local-global” representation,
which allows Reeber to scale efficiently on distributed memory systems, is given in [25, 27]
and its application to halo finding in [26].

4.2 Gimlet

Gimlet calculates a variety of quantities relevant for the intergalactic medium studies, which
are derived from different fields in Nyx, including:

e optical depth and flux of Lyman-a radiation along each axis

e mean Lyman-a flux along each axis

2-D PDF of temperature vs. baryon density

PDF and power spectrum of Lyman-a flux along each axis

PDF and power spectrum of each of

— baryon density
— dark matter density
— total matter density

— neutral hydrogen density

The details of these algorithms are described in [14]. The most interesting quantities cal-
culated by Gimlet are power spectra of the Lyman-«a flux and matter density. Gimlet uses
FFTW3 [28] to calculate the discrete Fourier transformation (DFT) of the grid data required
for power spectra. We note here also that FFTW3’s domain decomposition strategy for 3-D
DFTs has implications which are especially relevant for a study of n situ and in-transit
analysis performance. We discuss these in §5.

Given a 3-D scalar field, Gimlet calculates its DFT in two different ways:

1. It divides the grid into one-cell-thick “rays” which span the length of the entire problem
domain. All rays are aligned along one of the 3 axes. It then compute the 1-D DFT
and along each ray individually, accumulating the results into a power spectrum for the
entire grid. This approach captures line-of-sight effects of the cosmology simulation, as
discussed in [14]. Each DFT can be executed without MPI or domain decomposition,
since the memory footprint of each ray is small, even for large problem domains.

10
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Figure 4: Power spectrum of Lyman-a flux from 3 Nyx simulations using the Gimlet analysis
code, compared to observational data presented in [29]. The black line is the result of a
ACDM cosmological model with the reionization history described in [30]. The blue and red
lines are two WDM models, differing in their choice of dark matter particle mass: mpy =
0.85 keV (blue) and mpy = 2.1 keV (red).

2. It computes the 3-D DFT and power spectrum of the entire grid. This requires ex-
ploiting FFTW3’s domain decomposition features enabled with MPI.

As an example of Gimlet application, we show in Figure 4 a comparison between the
observed Lyman-« flux power spectrum, and predictions from 3 Nyx simulations. We plot a
dimensionless power spectrum calculated along the line of sight versus the wavelength mode
k. We show here one redshift only using data from [29], and we demonstrate how power
spectra differ when changing the thermal velocity dispersion of the dark matter. The black
line is the cold dark matter model which has no thermal velocity component in the initial
state. The blue and red lines correspond to two different warm dark matter (WDM) models,
mpym = 0.85 keV and mpy = 2.1 keV, respectively. The main task of Nyx simulations
with the Gimlet analysis pipeline is to determine which cosmological model and reionization
history fits the best existing observational data, and Figure 4 is a simple example when we
vary only one parameter out of ~ 10.

The two basic types of calculations Gimlet performs — PDFs and power spectra — ex-
hibit quite different performance behavior. PDF's scale well, since each MPI process bins only

11



local data. A single MPI Reduce() accumulates the data bins onto a single process, which
then writes it to disk. Power spectra, on the other hand, require calculating communication-
intensive DFTs. The need to reorganize data to fit domain decomposition required by the
FFTWS3 library — which differs from the native Nyx decomposition — incurs additional
expense. Gimlet’s overall scalability, therefore, is a convolution of these two extremes.

5 Performance

In this section we examine detailed performance figures for the in situ and in-transit work-
flows described above. All of these tests were performed on Edison, a Cray XC30 super-
computing system, at the National Energy Research Scientific Computing Center (NERSC).
Edison’s compute partition consists of 5576 nodes, each configured with two 12-core Intel
Xeon “Ivy Bridge” processors at 2.4 GHz, and 64 GB of DDR3 memory at 1866 MHz. Com-
pute nodes communicate using a Cray Aries interconnect which has “dragonfly” topology.
First we present results of some synthetic performance benchmarks, in order to establish
baselines by which to compare the performance of real analyses performed by the Reeber
and Gimlet. Then we present the results from the analysis codes themselves.

5.1 Lustre file write performance

In situ and in-transit methods attempt to circumvent the limitations of not only disk capac-
ity, but also disk bandwidth. It is therefore of interest to this study to measure the time a
code would normally spend saving the required data to disk in the traditional post-processing
workflow. To do so, we measured the time to write to write grids of various sizes, each con-
taining 10 state variables!, to the Lustre file system on Edison. BoxLib writes simulation
data in parallel using std::ostream: :write to individual files; it does not write to shared
files. The user specifies the number of files over which to distribute the simulation data, and
BoxLib in turn divides those files among its MPI processes. Each process writes only its
own data, and only one process writes to a given file at a time, although a single file may
ultimately contain data from multiple processes. The maximum number of files allowable is
the number of processes, such that each process writes its own data to a separate file.

We varied the size of the simulation grid from 128 to 20483, divided among Boxes of
size 323. This is a small Box size for Lyman-« simulations which typically do not use mesh
refinement; however, it is entirely typical for many other BoxLib-based applications which
perform AMR. The maximum number of processes for each test was 8192, although for
tests which had fewer than 8192 total Boxes (namely, those with 128% and 256® simulation
domains), we set the number of processes such that each process owned at least 1 Box. We
also varied the number of total files used, from 32 up to 8192, except in cases where there
were fewer than 8192 total Boxes.

We illustrate the file write performance on Lustre in Figure 5. We find that, for the
largest grid tested (2048%), the highest achievable write bandwidth on the Edison Lustre file

'In the following text we refer to this simply as a “10-component grid.”

12
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Figure 5: Aggregate bandwidth (GiB/sec) for writing 10-component simulation grids of
varying sizes to Lustre. Each data point shows the statistical mean over 5 writes, with the
standard deviation shown in error bars. The lack of data points for the 128% and 256* grids
at large numbers of writers are configurations with more MPI processes than total Boxes,
such that some portion of processes would write no data.

system is ~ 20 GiB/sec. For the 5123 grid, which serves as our test case when we explore
the performance of MPI traffic when running Nyx analysis codes in-transit in §5, the highest
write bandwidth is ~ 5 GiB/sec.

5.2 In-transit MPI performance

Before exploring the analysis workflow performance study which is presented in §5, here we
first perform two simple studies which measure the time required to move grid data from
one MPI group to another. In one test we used a 10-component grid of size 10242, which has
a total memory footprint of ~ 80 GiB. The grid was divided into Boxes of size 323, yielding
32768 total Boxes. We then fixed the total number of MPI processes at 8192, and varied the
number of analysis processes from 64 to 4096 (with the size of the compute group varying
from 8128 to 4096 processes). The results for this test are shown in Figure 6. In the second
test, we fixed the number of total processes at 8192 and also fixed the number of analysis
processes at 1024, leaving 7168 processes in the compute group. We then varied the size of
the grid to be transferred from 128 (64 Boxes with total size 156 MiB) to 2048% (262 144
Boxes with total size 640 GiB). The results are presented in Figure 7.

We see from this figure that the fastest bandwidth we achieve across the interconnect is
~ 58 GiB/s. The peak bandwidth for the entire Aries interconnect on Edison is 23.7 TB/s

13
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(~ 21.6 TiB/s) distributed across 5576 compute nodes, indicating a peak bandwidth per
node of ~ 4.0 GiB/s. From our test, the highest bandwidth per node was ~ 116 MiB/s, only
about 3% of peak. Since several different configurations in this test appear to plateau at the
same bandwidth, this limit may be due to high latency costs associated with sending and
receiving so many small Boxes. Were the Boxes much larger, as they often are in Lyman-a
simulations, the MPI traffic would consist of fewer and larger messages, which may achieve
higher per-node bandwidth. However, even performing so far below the peak, the bandwidth
of moving Boxes across the interconnect for the 5123 grid is still a factor of 10 faster than
saving it to disk on the Edison Lustre file system (cf. Figure 5).

From this simple study we can estimate that, in terms of pure transfer speed (neglecting
analysis or simulation scaling behavior), the optimal ratio of compute to analysis on Edison
is R ~ 9. For analysis algorithms which strong scale efficiently, this should be a useful
metric. The poor bandwidth for the small grids in Figure 7 arises because there are more
MPI processes than Boxes, so many processes do not partake in the transfer process; the
simulation therefore has access to a smaller portion of the aggregate available bandwidth on
the interconnect. In all cases, the total transfer time is on the order of seconds. If analysis is
performed infrequently, this comprises a small component of the total run time of most Nyx
simulations, which often take 2> ((10°) sec. However as the frequency of analysis increases,
the total time spent moving data can become considerable, and an in situ approach may
become more attractive.

The complexity of in-transit analysis presents a number of factors one should consider
in order to optimize code performance. For example, the cost of moving large volumes of
data across MPI groups via an interconnect is significant, but can nevertheless be dwarfed
by the cost of the analysis computation itself. Additionally, some analysis algorithms scale
poorly — significantly worse than the simulation — in which case incurring the penalty for
moving data to a small set of sidecar processes so that the simulation can continue may lead
to the best overall performance of the code. On the other hand, the data movement penalty
makes in-transit data processing impractical for applications which are already inexpensive
to calculate, or which scale very well, or both. These types of analysis may be more amenable
to in situ approaches.

In-transit analysis introduces an additional layer of load balancing complexity, in that
an optimally performant simulation maximizes the asynchrony of computation and analysis.
To illustrate this point, suppose a simulation for evolving a system forward in time reserves
C' MPI processes for computation and A for analysis. Denote by 7. the time required for the
compute processes to complete one time step of the simulation (without analysis), and 7, the
time for the analysis processes to complete analysis for one set of data. If the user requests
that the analysis execute every n time steps, then an optimal configuration of compute and
analysis groups would have nr1. ~ 7,. If the former is larger, then the analysis group finishes
too early and has no work to do while it waits for the next analysis signal; the converse is true
if the latter is larger. If one finds that n7. > 7,, then one option is to decrease A, the number
of analysis processes. This will increase the 7, but will simultaneously decrease 7. since we
assume that C'+ A = const. A second option to equilibrate the two time scales is to decrease
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n, although this option may not be useful in all cases, since n is likely driven by scientific
constraints and not code performance. If one relaxes the restriction that C + A = const.,
then one can adjust the size of the analysis group arbitrarily while keeping the compute
group fixed in order to balance the two time scales 7. and 7,.

The risk of load imbalance described above traces its roots to the static nature of the roles
of compute and analysis processes which we have assumed for this example, and which has
traditionally been characteristic of large-scale simulations. Much of it could be ameliorated
using dynamic simulation “steering,” in which the simulation periodically analyzes its own
load balance and adjusts the roles of its various processes accordingly. Returning to the
above example, one may request an additional task from the analysis group: every m time
steps, it measures the time spent in MPI calls between the the compute and analysis groups
(such calls remain unmatched while one group is still working). If n7r. > 7,, then before
the next time step the simulation re-sizes the MPI groups to increase C' and decrease M,
by an amount commensurate with the length of the time spent waiting for both groups
to synchronize. An even more exotic solution would be to subsume all resources into the
compute group until the nth time step, at which point the simulation spawns the analysis
group on the spot, performs the analysis, and re-assimilates those processes after analysis is
complete. The heuristics used to adjust the simulation configuration will likely be problem-
dependent and will need to draw from a statistical sample of simulation performance data;
we are actively pursuing this line of research.

5.3 Problem setup

Having established some synthetic benchmarks for disk and interconnect bandwidths, we
now turn to the application of these workflows on science problems in Nyx. Here we present
an exploratory performance analysis of in situ and in-transit implementations of both Reeber
and Gimlet. We evolved a Lyman-a forest problem [14] on a 5123 grid with a single level
(no mesh refinement) for 30 time steps, resuming a previous simulation which stopped at
redshift z ~ 3. We chose this cosmological epoch because this is often when the most “post-
processing” is performed, due the wealth of observational data available for comparison
[14, 31]. The physical domain for this problem spanned 10 Mpc per side, yielding a resolution
of Az ~ 20 kpc. The domain boundaries were periodic in all three dimensions. We ran the
simulation in three different configurations: with no analysis, with Reeber, and with Gimlet.?
In simulations which perform analysis, the analysis code executed every 5 time steps, starting
at step 1. We choose this configuration such that the last time step during which analysis is
performed is number 26; this gives the sidecar group a “complete” window of 5 simulation
time steps (26-30) in which to perform the last analysis.

We divided the cubic domain into cubic Boxes of size 323, for a total of 4096 Boxes.
When running in situ, we ran the simulation and analysis on 2048 MPI processes, and

2In production runs, one may wish to execute both analysis codes in a single simulation, but for the
purposes of this performance study, we do not consider this case, as it obscures the performance behavior
we seek to study.
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decomposed the domain such that each MPI process worked on exactly 2 Boxes. For the
in-transit mode, we chose the number of MPI processes in two different ways. First, we
fixed the number of total processes at 2048, and varied the number of processes allocated
to either the simulation or sidecars. This approach shows the optimal balance of each if the
goal is to fit the simulation into a desired queue on a computational system which has a
restriction on the maximum number of total processes. Our second approach was to fix the
number of processes devoted to the simulation at 2048, and to vary the number of additional
processes devoted to analysis. The total number of processes was then larger than 2048.
This approach has in mind the case that the user wishes for the grid data to be distributed
among the simulation cores in a particular way to preserve load balance, and that one is
less concerned with the total number of processes being used. A simple example illustrates
the influence of load imbalance across MPI processes: if we have 4096 Boxes spanning the
domain but only 2047 processes evolving the simulation instead of 2048, two of those 2047
process must each operate on 3 Boxes, while the other 2045 processes operate on only 2.
However, all processes must wait for the two processes which are computing 3 Boxes. Thus,
decreasing the computational resources by 0.05% increases the total run time by 50%.

In all simulations, we ran Nyx, Reeber, and Gimlet using pure MPI, with no OpenMP.
We used version 3.3.4.6 of FFTW3, and compiled all codes with the GNU compiler suite,
version 5.2.0, with “-03” optimization. In all DF'T calculations, we used FFTW3’s default
“plan” flag, FFTW_MEASURE, to determine the optimal FFTW3 execution strategy.

5.4 Results

We summarize our performance results in Figures 8 & 9. There we compare various compo-
nents of the simulation running both Reeber and Gimlet in situ and in-transit. Specifically,
we plot the total end-to-end run times in solid lines, the time for each post-processing step
(every 5th time step) as dashed lines, and the time to evolve the simulation 5 time steps
with dot-dashed lines. For visual clarity, the in-transit runs have markers at each data point,
while the in situ lines are unmarked, as they represent a single data point. Each data point
for the post-processing execution time is an average over 6 iterations; the standard devia-
tions illustrated with error bars would be smaller than the line thickness and are thus not
indicated in either figure. Each total run time is a single data point since each complete
configuration was run only once. The lines labeled “CT” used a constant number of total
processes (2048 for these tests), such that, e.g., when using 16 sidecar processes, 2032 are
running the simulation. Those labeled “CS” have a constant number of processes working on
the simulation alone, such that when using 16 sidecar processes a total of 2048 + 16 = 2064
processes are running. The in situ lines are horizontal and independent of the number of
sidecar processes they use a fixed number of 2048 total processes, all of which perform both
simulation and analysis. The CT and in situ configurations, therefore, always use a total of
2048 processes, while the CS configurations use > 2048.

The times to post-process (dashed lines in in each of the two figures) illustrate the strong
scaling behavior of both analysis codes. The interplay among the different scalabilities
presented here — those of the analysis suite, simulation code itself, and the combination
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Figure 8: Performance of Reeber running in situ and in-transit with different distributions of
MPI processes. The times indicated are wall clock seconds. We used two different in-transit
configurations: once with a constant total number of 2048 MPI processes (“CT”), and once
with a constant number of processes (2048) devoted to simulation (“CS”). Time time to
post-processes for the CS and CT in-transit configurations are nearly identical.
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Figure 9: Same as Figure 8, except with Gimlet. Time time to post-processes for the CS
and CT in-transit configurations are nearly identical.
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of the two — are complex and require a nuanced interpretation. In Figure 8 we see that
Reeber strong scales efficiently, although its performance begins to plateau at large numbers
of MPI processes, due to the relatively small problem size (a 5123 problem domain). We
also note that Reeber running in situ on 2048 processes is actually slower than on 512 or
1024 processes in-transit, which is due to having too many processes operating on too small
a problem.

Figure 8 also illustrates the relationship between the scalability of the analysis code
alone and that of the entire code suite (simulation4analysis). In particular, we see that
for < 64 sidecar processes performing analysis, a single Reeber analysis call takes longer
than the 5 intervening simulation time steps. As a result, the strong scaling behavior of
the complete simulation+analysis suite mirrors that of Reeber almost exactly. However,
for > 128 sidecar processes, Reeber is equal to or faster than the 5 simulation time steps,
such that the scalability of the entire code suite begins to decouple from that of Reeber
alone. This behavior has different effects for the CS and CT in-transit configurations. For
the CS configuration, the scalability of the code becomes asymptotically flat for > 128
sidecar processes, because Reeber completes before the 5 simulation time steps are done.
Any number of additional sidecar processes above ~ 256 is wasted in this mode. For the CT
configuration, the end-to-end wall clock time begins to increase for > 128 sidecar processes,
because even though Reeber is executing faster and faster, increasing number of sidecar
processes decreases the number of simulation processes, which slows the entire code down.

In light of this behavior, it is critical to find the configuration which yields the best
performance for in-transit analysis. Deviating from this configuration leads either to wasted
compute resources, or to a degradation of overall code performance. We note that the optimal
setup for Reeber in both the CS and CT configurations for this particular Nyx simulation
— using 128 to 256 sidecar processes for Reeber and the remainder for simulation — is faster
than running the entire code suite in situ. The CT mode is especially appealing, as it uses
the same number of MPI resources as the in situ mode (2048 processes total), and less than
the corresponding CS configuration (2176 to 2304 processes).

Gimlet’s scaling in Figure 9, however, is more complex. This is because Gimlet performs
a variety of tasks, calculating both PDF's, which strong scale very well, and power spectra,
which do not. Specifically, while BoxLib can decompose the problem domain into an arbitrary
block structure, the only domain decomposition strategy which FFTW3 supports is to stripe
along the first dimension in row-major array indexing, or the last dimension in column-major
indexing. (FAB data in BoxLib uses the latter.) Therefore, the Nyx problem domain must be
divided into “slabs” which span the entire z-y plane. Furthermore, the maximum number
of slabs we can create is the number of grid points of the domain along the z-axis (512
in this case). Since FFTW3 allows only one MPI process to work on each slab, we are
therefore limited to a total of 512 processes which can participate in the DFT calculation;
the remaining processes (1536 when running in situ) are idle. This load imbalance becomes
worse as the problem size grows: if using ~ 100000 processes to simulate a 40963 grid,
then ~ 96000 cores will be idle during the DFT calculation. This slab decomposition
problem has inspired the development of “pencil”’-based decomposition strategies for 3-D
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DFTs which provide better scaling behavior [32, 33]. If we run Gimlet in-transit instead
of in situ, however, we can address this problem by choosing a relatively small number of
processes to participate in the DF'T, leaving the rest to continue with the simulation.

The aggregate performance of Gimlet therefore represents a convolution of the scaling
properties of both PDFs and power spectra. Although the power spectrum calculation scaling
behavior quickly saturates as discussed above, we expect nearly ideal strong scaling behavior
for the calculation of PDFs. Therefore, when we see in Figure 9 that the time for analysis
increases between 256 and 512 analysis processes, this is due to the DFT calculations. In
particular, when calculating the DFT of a 5123 grid on 512 MPI processes, each process
has exactly one x — y plane of data. The ratio of work-to-communication may be low for
such an extreme decomposition, leading to worse performance with 512 processes than with
256. Despite the jump in analysis time between 256 and 512 processes, however, the time
decreases once again between 512 and 1024 processes. When executing the DFT on 1024
processes, we leave 512 idle, so the time for that component is likely exactly the same as it
was with 512; in fact, the DFT calculation time will never decrease for > 512 processes.?
The decrease in total analysis time is instead due to the continued strong scaling of the PDF
calculations.

The relationship between the scalability of Gimlet and the entire code suite is different
than for Reeber, chiefly because Gimlet execution takes significantly longer than does Reeber.
For almost any number of sidecar processes in Figure 9, the time to execute Gimlet is longer
than the corresponding 5 simulation time steps. (For 256 sidecar processes the two times
are roughly equivalent). As a result, Gimlet dominates the total code execution time, and
the simulation4analysis strong scaling behavior follows that of Gimlet alone almost exactly.

As was the case with Reeber, we see in Figure 9 that some CS and CT configurations lead
to faster end-to-end run times than in situ. Coincidentally, the threshold at which CT and
CS runs become faster is between 64 and 128 sidecar processes, the same as Reeber. When
using 128 sidecar processes, the CT and CS configurations are ~ 30% faster than the in situ
run, whereas the optimal configurations with Reeber were only ~ 15% faster. These values
are functions both of the scalability of the analysis codes being used, as well as the total
time they take to execute. The key point is that for both analysis codes, one can construct
an in-transit MPI configuration which is significantly faster than running in situ.

6 Summary and Prospects

In situ and in-transit data post-processing workflows represent a promising subset of capa-
bilities which we believe will be required in order to be scientifically productive on current
and future generations of computing platforms. They avoid the constraints of limited disk
capacity and bandwidth by shifting the requisite data movement “upward” in the architec-

3For simulations in which the number of MPI processes calling FFTW3 is equal to or larger than the
number of available “slabs”, we could select an arbitrarily smaller number of processes to perform the FFTW3
call, since it seems that using the maximum possible number of slabs and MPI processes does not lead to the
fastest performance of the DFT. However, the optimal number of processes will likely be problem-dependent.
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tural hierarchy, that is, from disk to compute node memory. One can imagine continuing
this trend to even finer levels of granularity, shifting from data movement between compute
nodes across an interconnect, to movement across NUMA domains within a compute node.
This could be implemented in several different ways; one would be to use “thread teams”
introduced in in OpenMP 4.0 (which is already widely implemented in modern compilers)
to delegate simulation and analysis tasks within a compute node. A second approach would
be to extend the MPI implementation we have introduced in this work to incorporate the
shared memory “windows” developed in MPI-3.

We have demonstrated the capability of these new in situ and in-transit capabilities
in BoxLib by running two analysis codes in each of the two workflows. Although small
in number, this sample of analyses — finding halos and calculation power spectra — is
highly representative of post-processing tasks performed on cosmological simulation data. We
caution, however, that the results presented in §5.4 are highly problem-dependent; although
we found in-transit configurations which yield faster overall performance than in situ for
both analysis codes, the situation may be different when running simulations on larger
grids, using larger numbers of processes, running analysis algorithms with different scaling
behavior, using a different frequency of analysis, etc. Furthermore, we highlight the caveat
that, in some situations, on-the-fly data post-processing is not a useful tool, namely in
exploratory calculations, which are and will continue to be critical components of numerical
simulations. In these cases, other techniques will be more useful, including on-disk data
compression. We anticipate, then, that a variety of tools and techniques will be required to
solve these data-centric challenges in HPC.

Besides raw performance gains, in situ and in-transit workflows can improve the “time
to science” for numerical simulations in other ways as well. For example, by running both
simulation and analysis at the same time, one eliminates an extra step in the post-processing
pipeline. This reduces the chance for human error which can arise when one must compile
and run two separate codes with two separate sets of inputs, parameters, etc.

The in situ and in-transit workflows we have discussed are not limited purely to floating-
point applications, even though that has been our focus in this work. Another critical
component of simulation is visualization, and recently both the ParaView and Vislt frame-
works have implemented functionality for performing visualization on data which resides in
memory (“ParaView Catalyst” [34] and “libsim” [35]).

Our implementations of in situ and in-transit post-processing show that these types of
workflows are efficient on current supercomputing systems: the expense of data movement via
MPI in the latter workflow is, in the cases examined here, small compared to the total time
spent performing simulation or analysis. Therefore, the penalty for trading disk space for
CPU-hours (both of which are limited commodities) is not severe. While we have examined
only two analysis codes in this work, in the future we will be able to evaluate the myriad other
analysis workflows which are critical components of other BoxLib codes. Because we have
built these capabilities into BoxLib itself, rather than into Nyx specifically, these workflows
will support a wide variety of applications. The infrastructure described here will provide
scientists working with BoxLib-based codes in astrophysics, subsurface flow, combustion,
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and porous media, an efficient way to manage and analyze the increasingly large datasets
generated by their simulations.
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